Integrated Design Capability / Instrument Design Laboratory

Ocean Color Experiment Ver. 2 (OCE2)

~ Concept Presentations~

Electrical

Kenda Newton
Paul Earle
April 27, 2011

Do not distribute this material without permission from the Scientific Point of Contact Jay Smith (James.C.Smith@nasa.gov) or the Programmatic Point of Contact Angela Mason (Angela.J.Mason@nasa.gov)

This document contains sensitive information and is intended for NASA Official Use Only

Electrical Subsystem Presentation

Integrated Design Capability / Instrument Design Laboratory

Document electrical architecture

- Functional requirements
- Electrical block diagram
- Indicate redundancy (baseline configuration)
- Estimate instrument power needs for average, peak, and survival cases
- Document electrical interface assumptions and estimate harness mass
- Estimate telemetry rates and the required S/C data storage

Electrical Subsystem Functions

Integrated Design Capability / Instrument Design Laboratory

Realize an electrical architecture and instrument processing capability consistent with the mission class and lifetime

- Class C Mission
- 3 year minimum operation, 5 year goal

Control all hardware

- Realize electrical hardware and processing capability to control all instrument functions: instrument modes, housekeeping monitoring, power conditioning, telemetry packetization
 - Switching between redundancy is commanded from the ground
- Readout detectors: process raw data, control CDS readout, compress raw data
- Perform integration control algorithm
- Control all mechanisms (5): scan, half angle mirror, momentum compensation, tilt, and calibration
 - Launch lock mechanisms are controlled by S/C
- Control all thermal hardware

OCE2 Study Week: 4/23 - 4/27/12

Electrical Box Arrangement

Integrated Design Capability / Instrument Design Laboratory

Electrical Box Arrangement

Laboratory

AASA
GODDARD
SPACE FUGHT CENTER

Integrated Design Capability / Instrument Design Laboratory

*4 in the Delta Config

Electrical Interfaces

Integrated Design Capability / Instrument Design Laboratory

OCE2 Study Week: 4/23 - 4/27/12

Use or disclosure of this data is subject to the restriction on the title page of this document

Electrical, p6 Final Version

Electrical Board/Box Summary (Baseline)

Integrated Design Capability / Instrument Design Laboratory

Box*	Boards	Board Mass*	Chassis Mass Dimensions	Total Mass
Main Electronics Box (MEB)	 5 6U Cards: CPU Housekeeping Thermal Control (2) LVPS 	0.59kg/each 3.4kg Total	1.5kg 10x7.3x6" 25.4x18.5x15.2cm	5.0kg
Detector Digitizer Boxes (3)	 7 6U Cards: Digitizer boards (5) Compression and Spacewire Merge LVPS 	0.59kg/each 5.5kg Total	2kg 10x7.3x9" 25.4x18.5x22.9cm	7.5kg/each 22.5kg Total
Mechanism Control Electronics Box (MCEB)	 9 6U Cards: Scan Control (A/B) HAM Control (A/B) Mom Control (A/B) Tilt Control Cal Control LVPS 	0.59kg/each 6.2kg Total	2.1kg 10x7.3x10" 25.4x18.5x25.4cm	8.3kg

^{*} Each box also includes a backplane

Power Summary (Baseline)

Integrated Design Capability / Instrument Design Laboratory

OCE2 Baseline Configuration	Peak	Average	
Scan Drum Assembly	70	14.8	
Motor/Inductosyn	50	12	
Half Angle Motor/Inductosyn	20	2.8	
Launch Locks for Scan (powered by S/C)	4.5	0	
Momentum Compensation Assembly	50	47	
Cradle Assembly	30	0	
Tilt Mechanism Motor 1/Resolver	15	15	
Tilt Mechanism Motor 2/Resolver	15	15	
Launch Locks for Tilt (powered by S/C)	4.5	0	
Aft Optics Assembly	401	385	
Preamp, FET switches, FET driver (1W each)	144	144	
Digitizer Electronics Box (30W each)	90	90	
Main Electronics Box	136.7	136.7	
Mechanism Control Electronics Box	31	15	
Operational Heater Power (shown on next page)	97	68	
Instrument Total	648W	514.8W	

Operational Heater Power (Baseline)

Integrated Design Capability / Instrument Design Laboratory

Assembly	Average Heater Power (W)	Peak Heater Power (W)		
Silicon PIN & Preamp Thermal Box	41	59		
InGaAs PIN & Preamp Thermal Box	2	3		
Fiber Optics Enclosure	15	21		
Optics	10	14		
Total	68	97		

Operating mode heater power is sized in worst cold operating case

Survival Heater Power (Baseline)

Integrated Design Capability / Instrument Design Laboratory

Assembly	Average Heater Power (W)	Peak Heater Power (W)		
MEB	54	77		
MCEB	15	21		
Digitizer Electronics	52	74		
Silicon PIN & Preamp	59	84		
InGaAs PIN & Preamp	5	7		
Fiber Optics Enclosure	14	20		
Optics	10	14		
Mechanisms	35	50		
Total	244	349		

Radiators are sized for the worst hot operating case

Integrated Design Capability / Instrument Design Laboratory

Instrument Detector Readout Data Rate: instrument does not discard any data

- Assume 144 channels per scan
- 30 μs Integration Period
- Digitizing 16-bits, transmitting 14-bits each channel
- → Raw digitized detector data: 67.2Mbps
- ⇒ 2:1 compression implement in digitizer electronics (USES chip): 33.6Mbps

Additional Instrument Data that is included in the Instrument Data, but is negligible:

- Housekeeping data (thermal, voltage, current, etc)
- Integration period measurements (taken for 12 detectors in both the baseline and delta instrument configurations)
- Dark current calibration images (possibly once per revolution)

Instrument Packetization: instrument data rate to the S/C

- ⇒ There is 2% additional CCSDS overhead for packet headers: 34.272Mbps
- **⇒** Daily instrument data rate to S/C: 2961Gbits/day

Effective Instrument Downlink Data Rate from S/C: the S/C may discard unuseful data for these considerations

- ⇒ Discarding information beyond 102degrees
- ⇒ Discarding data beyond 70 degrees latitude
- ⇒ Discarding data taken over unlit Earth

OCE2 Study Week: 4/23 - 4/27/12

Harness Estimate (Baseline)

Integrated Design Capability / Instrument Design Laboratory

OCE2 Harness	Type	Backup	Primary	Flt Qty	Mass (ea)	Total Mass
Detector to Digitizer Box 1 (0.5m)	RS-422/analog	0	1	1	2.1	2.1
Detector to Digitizer Box 2 (0.5m)	RS-422/analog	0	1	1	2.1	2.1
Detector to Digitizer Box 3 (0.5m)	RS-422/analog	0	1	1	2.1	2.1
Detector to Digitizer Box 4 (0.5m)	RS-422/analog	0	0	0	0.0	0.0
Digitizer Box 1 to MEB (0.46m)	SpW	0	1	1	0.2	0.2
Digitizer Box 2 to MEB (0.59m)	SpW	0	1	1	0.2	0.2
Digitizer Box 3 to MEB (0.72m)	SpW	0	1	1	0.3	0.3
Digitizer Box 4 to MEB (0.85m)	SpW	0	0	0	0.0	0.0
Scan Motor & Inductosyn® Absolute rotary						
resolver to Mechanism Control Box (1.6m)	Power, Cmd, and Telm	1	1	2	1.3	2.7
Half Angle Motor & Inductosyn® Absolute rotary						
resolver to Mechanism Control Box (1.4m)	Power, Cmd, and Telm	1	1	2	1.2	2.4
Momentum Compensation Mechanism & Resolver						
to Mechanism Control Box (1.6m)	Power, Cmd, and Telm	1	1	2	1.3	2.7
Calibration Mechanism & Resolver to Mechanism						
Control Box (2m)	Power, Cmd, and Telm	0	1	1	1.7	1.7
Tilt Stepper Motor & Resolver to MEB (.5m)	Power, Cmd, and Telm	0	2	2	0.4	0.8
Scan Launch Lock to S/C Bulk Head (.7m)	Power	0	1	1	0.1	0.1
Tilt Launch Lock to S/C Bulk Head (.3m)	Power	0	1	1	0.1	0.1
Ops Heaters to MEB (1m)	Power	1	1	2	1.3	2.5
Op Temp Sensors to MEB (1m)	Analog	1	1	2	0.8	1.7
MEB to Mechanism Control Box (0.2m)	Power, Cmd, and Telm	0	1	1	0.2	0.2
MEB to S/C Bulk Head (1m)	1553	0	1	1	0.1	0.1
MEB to S/C Bulk Head (1m)	SpW + 1pps	0	1	1	0.5	0.5
MEB to S/C Bulk Head (1m)	Power	0	1	1	0.2	0.2
Survival Heaters & Mechanical Thermostats to S/						
C (.7m)	Power	1	1	2	3.4	6.8
· · · · · · · · · · · · · · · · · · ·					Total (Ka)	20.29

NASA

Total (Kg) 29.28

Use or disclosure of this data is subject to the restriction on the title page of this document

Electrical, p12 Final Version